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Abstract. The upper critical field in MgB2 is investigated in the framework of the two-gap
Ginzburg-Landau theory. A variational solution of linearized Ginzburg-Landau equations agrees well with
the Landau level expansion and demonstrates that spatial distributions of the gap functions are different
in the two bands and change with temperature. The temperature variation of the ratio of two gaps is
responsible for the upward temperature dependence of in-plane Hc2 as well as for the deviation of its
out-of-plane behavior from the standard angular dependence. The hexagonal in-plane modulations of Hc2

can change sign with decreasing temperature.

PACS. 74.70.Ad Metals; alloys and binary compounds (including A15, MgB2, etc.) – 74.20.De
Phenomenological theories (two-fluid, Ginzburg-Landau etc.) – 74.25.Op Mixed states, critical fields, and
surface sheaths

1 Introduction

Multigap superconductivity [1,2] has been discussed in
the late 1950’s for materials with a varying strength of
electron-phonon interactions between different pieces of
the Fermi surface. After the discovery of superconductiv-
ity in MgB2 [3] in 2001, an impressive collection of exper-
imental and theoretical works [4] has established that this
compound is the first unambiguous example of a multi-
gap superconductor. In MgB2 the charge carriers are dis-
tributed between two sets of bands: the σ-bands with
quasi-2D cylindrical Fermi sheets and the π-bands with
3D sheets forming a tubular network. The electron-phonon
coupling is stronger in the σ-bands than in the π-bands,
and gives rise to an s-wave phonon-mediated supercon-
ductivity with two gaps ∆1 ∼ 7 meV and ∆2 ∼ 2.5 meV.
Since the two sets have different characteristics (interac-
tion with phonons, geometry of the Fermi sheets, impurity
dependence etc.), an interplay between them results in de-
viations from the standard BCS theory. The most striking
consequences of the two gaps are the unusual anisotropic
features of MgB2 under magnetic field, for example, in-
equality between the penetration depth and the upper
critical field anisotropies, and their variations with tem-
perature [5–16], and the 30◦-reorientation of the flux line
lattice with increasing magnetic field applied along the
c-axis [17,18].

The two-gap Ginzburg-Landau (GL) theory for MgB2

developed in reference [18] (see also the preceding
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works [19,20]) is the exact limit of the microscopic the-
ory in the vicinity of the transition temperature. It can
thus account for most of the observed properties in a clear
and coherent way near Tc, while its simplicity compared
to earlier studies is useful to understand the physics in
this material. In the present paper we extend our previ-
ous analysis of the two-band effects [18] on angular and
temperature dependence of the upper critical field Hc2.
We minimize the GL functional using a variational pro-
cedure, which highlights separate spatial anisotropies of
the gap in each band. This is an improvement compared
to the earlier solutions where only one common distortion
for both gaps is considered [11,14]. This method is com-
pared to a solution based on the Landau level expansion.
We then estimate the temperature range of the GL regime.
The present study covers the out-of-plane Hc2 anisotropy.
By going beyond the ellipsoid Fermi sheet approximation
of references [12,14], we also calculate in-plane modula-
tion of the upper critical field arising from the hexagonal
crystal symmetry.

For a clean two-band BCS superconductor with
two gaps ∆1 and ∆2, the GL functional [18] has the form

FGL =
∫

dx
[
α1|∆1|2 + α2|∆2|2 − γ(∆∗

1∆2 + ∆∗
2∆1)

+ K1i|Πi∆1|2+ K2i|Πi∆2|2 + 1
2β1|∆1|4+ 1

2β2|∆2|4
]
,

Πi = −i∂i +
2π

Φ0
Ai, α1,2 =

g2,1

G
− N1,2 ln

2ωDeC

πT
,

γ =
g3

G
, Kni =

7ζ(3)Nn

16π2T 2
c

〈
v2

Fni

〉
, βn =

7ζ(3)Nn

8π2T 2
c

(1)
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where repeating index i implies a sum, Φ0 is the quan-
tum flux, A the potential vector, g1 and g2 the intraband
pairing coefficients (n = 1,2 for the σ,π-band), g3 the in-
terband pairing coefficient, G = g1g2 − g2

3 , Nn the density
of states at the Fermi level in the band n, ωD the Debye
frequency, C the Euler constant, and 〈v2

Fni〉 the square of
the Fermi velocity i-component averaged on the sheet n.
It is then convenient to write α1 = −a1t with a1 = N1,
t = ln(T1/T ) and T1 = (2ωDeC/π)e−g2/GN1 for the first
active band and α2 = α20 − a2t with a2 = N2 for the
passive band. In MgB2 the active and passive bands cor-
respond to the σ and π bands, respectively.

The crystal structure of MgB2 is uniaxial, so the gra-
dient coefficients are the same for all directions in the
basal plane, and Kna = Knb = Kn. LDA calculations [21]
yield for the highly anisotropic σ-band 〈v2

F1ab〉 = 2.13 and
〈v2

F1c〉 = 0.05, while for the π-band 〈v2
F2ab〉 = 1.51 and

〈v2
F2c〉 = 2.96, all numbers are in units of 1015 cm2/s2.

With the provided ratio N2/N1 = 1.5, the in-plane gradi-
ent constants for the two bands are practically the same
K2/K1 ≈ 1.06, whereas the c-axis constants differ by al-
most two orders of magnitude K2c/K1c ≈ 90. A crude
estimate for Hc2 at zero temperature by N1√

K1K1c

Φ0
2π ≈

4 T is substantially smaller than the experimental value
Hab

c2 (0 K) ≈ 18 T, which suggests the gradient constants
based on LDA data are over-estimated by a factor of four.
Such a discrepancy is due to a significant renormalization
of effective masses by the electron-phonon coupling. The
electron-phonon coupling leads to effective masses twice
larger than the LDA prediction in the σ-band, whereas
they are only slightly renormalized in the π-band [22]. The
reduction of gradient term coefficients is given by squares
of the mass renormalization factors.

The interband impurity scattering in MgB2 is excep-
tionally small due to its particular electronic structure,
even in low quality samples [23]. The clean limit two-gap
GL theory described above is straightforwardly extended
to include the effect of s-wave intraband scattering by non-
magnetic impurities [24]: the GL functional keeps the same
form wherein the expression for Kni has to be replaced by
Kni = πNn〈v2

Fni〉Λ(τn)/8Tc with

Λ(τn) = τn
8
π2

∑
m

1
(2m + 1)2((2m + 1)2πτnTc + 1)

, (2)

where τn is the transport collision time in the band n. The
intraband anisotropy is then the same as in the clean limit,
while the renormalization factor Λ(τn) can vary between
the two bands due to different sensitivity to impurities.
The resulting GL equations are naturally found as the
limit of Usadel equations near Tc [11,15].

2 Upward curvature of Hab
c2(T)

In this section the z-axis is fixed along the crystal c-axis
and the y-axis is taken parallel to the magnetic field ap-
plied in the ab-plane. The vector potential is chosen in the
Landau gauge as A = (Hz, 0, 0). The coupled linearized

GL equations for solutions homogeneous along the field
direction are(

αn + Knh2z2 − Knc∂
2
z

)
∆n − γ∆n′ = 0 (3)

for n = 1, 2, n′ = 2, 1, with the reduced magnetic field
h = 2πH/Φ0. Since K1c/K1 �= K2c/K2, an analytic solu-
tion can not be obtained by rescaling distances as in the
single-gap case. We, therefore, search for an approximate
solution of the form

(
∆1

∆2

)
=

(
c ξ̃

− 1
2

1 Ψ0(z/ξ̃1)
d ξ̃

− 1
2

2 Ψ0(z/ξ̃2)

)
(4)

where the Landau level wave functions are defined by

Ψp(z) =
1√
p!

[
1√
2
(−∂z + z)

]p
e−z2/2

π1/4
. (5)

Different coherence lengths for each band are allowed with
the parameterization ξ̃2

n = µn/h where µn quantifies the
distortion of the spatial distribution of the nth component
(in the single-gap case, µ is the stretching factor of the flux
line lattice at the upper critical field and is independent
from temperature). The following quadratic form in the
GL functional is then found:

F2 =
(
α1 + hK̃1

)
|c|2 +

(
α2 + hK̃2

)
|d|2

−γ̃ (c∗d + d∗c) (6)

with K̃n = 1
2 (Knµn+Knc/µn) and γ̃2 = γ2 2

√
µ1µ2

µ1+µ2
. At the

transition field, the determinant in equation (6) vanishes.
This condition leads to

h̃(µ1, µ2) =

− α1

2K̃1

− α2

2K̃2

+

√(
α1

2K̃1

− α2

2K̃2

)2

+
γ̃2

K̃1K̃2

. (7)

In order to find the (nucleation) upper critical field, h̃ is
maximized h̃c2 = maxµ1,µ2 h̃(µ1, µ2).

Within the above variational scheme, the analytic ex-
pressions for the in-plane transition field are possible in
two temperature regimes. Near Tc, vanishing h̃ implies
that the superconducting gaps have the same variation
length in each band. The condition µ1 = µ2 yields

h̃ab
c2 ≈ a1(t − tc)√

(K1 + ρ2K2)((K1z + ρ2K2z)
(8)

with the gap ratio ρ = |d/c| ≈ √
α1/α2 and tc =

ln(T1/Tc). Since K1c ∼ 0.01K2c in MgB2, whereas ρ2 ≈
0.1, we can simplify the above expression to

h̃ab
c2 ≈ a1(t − tc)

ρ
√

K1K2c

. (9)

In the second temperature regime for T < T1, the first
active band is dominant and

h̃ab
c2 ≈ a1t√

K1K1c

. (10)
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Fig. 1. The upper critical field in MgB2: experimental data
from Lyard et al. [6] (symbols) and the GL computations with
parameters α20 = 0.65a1 and γ = 0.4a1 (solid lines). The inset
shows the anisotropy ratio γH = Hab

c2 /Hc
c2.

The line Hab
c2 (T ) exhibits, therefore, a marked upturn cur-

vature between the two regimes, in contrast to Hc
c2(T).

The two upper critical fields are plotted in Figure 1. In or-
der to fit the experimental data, we have renormalized all
gradient constants obtained from the LDA data by a fac-
tor of five. The corresponding mass enhancement

√
5 ≈ 2.2

roughly agrees with the electron-phonon renormalization
factor [22]. For simplicity, the same value has been applied
for both bands.

In order to verify an accuracy of the variational
method, we alternatively proceed by expanding the gap
functions in terms of the the Landau levels: ∆n =∑

p cn,pφn,p where φn,p(z) = ξ
−1/2
n Ψp(z/ξn) and ξ2

n =√
Knc/Kn/h. For the upper critical field this expansion

is restricted to the even order levels. The quadratic part
of the GL functional has the following matrix element in
this base:

MF2
2p+n,2q+n′ =

(
αn + (4p + 1)h

√
KnKnc

)
δn,n′δp,q

−γ

∫
dx φ∗

n,2p(x)φn′,2q(x) (1 − δn,n′) (11)

with n, n′ ∈ {1, 2}, and p, q ≥ 0. The upper critical
field hc2 is then approximated by the largest root of the
sub-matrix determinant corresponding to the desired ex-
pansion up to the order Nmax.

Although the zeroth order approximation significantly
deviates near Tc (see Fig. 2), the procedure is rapidly con-
verging with increasing the expansion order, even in the
case of a great disparity between the two bands (e.g.,
ξ2
1/ξ2

2 ≥ 100 or ≤0.01). The expansion to the order
Nmax ≥ 12 yields the upper critical field curve in excellent
agreement with the variational solution (the two curves
are indistinguishable on the scale of Fig. 2).

Figure 3 displays the behavior of the parameters µn

defining the effective anisotropy of the variation lengths ξ̃n

in the plane perpendicular to the magnetic field, i.e.
µn = ξ̃nc/ξ̃nab for the magnetic field applied in the basal
plane. This confirms the above analytic predictions: the
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Fig. 2. In-plane Hc2 calculated with the Landau level expan-
sion to the order Nmax for the same parameters as in Figure 1.
The inset displays the gap ratio ρ = ∆2/∆1 found with the
highest expansion order.
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Fig. 3. Lower panel: temperature dependence of variational
parameters for in-plane magnetic field and the same set of
GL parameters as in Figure 1; Upper panel: absolute values
of the two gaps in the vicinity of Hc2 near to and away from
the transition temperature.

order parameter varies on different length scales for each
band, and µn can change with temperature contrary to
the single-gap case. At Tc, the two parameters have the
same value

√
(K1z + ρ2K2z)/(K1 + ρ2K2) = 0.59 with

ρ = 0.44, while µ1 ≈ √
K1c/K1 = 0.15 below T1 = 29 K.

We should stress that periodic vortex structures for the
two gaps have the same lattice parameters for arbitrary
ratio of µ1/µ2. However, spatial distributions of |∆1(r)|2
and |∆2(r)|2 become quite different at low temperatures
once µ1 
 µ2. Such a behavior is demonstrated on the
top panel of Figure 3. The different spatial distributions
of the two gaps can be probed by scanning tunneling
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microscopy. Also, magnetic field generated by supercon-
ducting currents hs(r) ∼ (|∆1(r)|2 + |∆2(r)|2) should
deviate significantly for a distribution expected for an
anisotropic single-gap superconductor. Muon spin relax-
ation measurements can in principle verify such a behav-
ior.

We shall now estimate the temperature range of the
GL regime from the above computations. The gradient ex-
pansion is valid as long as |Kni∂

2
i ∆n| < ∆n for all n and i.

This condition is approximately replaced with Kni/ξ̃2
ni <

1. The most restrictive case is for K2c/ξ̃2
2c = K2ch

ab
c2/µ2,

which becomes ∼1 below ∼30 K, well beyond a nar-
row temperature regime suggested for the GL theory by
Golubov and Koshelev [11]. The discrepancy is partially
terminological, since in reference [11] the GL approxi-
mation always corresponds to an effective (anisotropic)
single-gap GL theory, which is correct only when the ra-
tio of the two gaps is constant. As we have demonstrated
above, the full two-gap GL theory is valid in a much wider
temperature range and describes adequately temperature
variation of ∆2/∆1 (Fig. 2) and of the two coherence
lengths (Fig. 3).

3 Angular dependence of out-of-plane Hc2

Let us now discuss the out-of-plane behavior of the up-
per critical field. In the single-gap anisotropic GL theory,
when H is tilted from the c-axis by an angle θ, the up-
per critical field has an elliptic (effective mass) angular
dependence

HSAGL(θ, T ) =
Hc

c2(T )√
cos2(θ) + sin2(θ)γ−2

H

, (12)

where γH = Hab
c2 /Hc

c2 is a temperature independent con-
stant

√
Kc/Kab. Experimental measurements in MgB2

have shown that not only γH changes with tempera-
ture (Fig. 1) but deviations from the elliptic angular de-
pendence (12) grow with decreasing temperature [5,8,9].
Such a behavior has been reproduced within quasi-
classical Usadel equations [11]. The methods we have em-
ployed for Hab

c2 are still valid to find Hc2(θ): one needs
only to replace Knc by an angular dependent Kn(θ) =
cos2(θ)Kn + sin2(θ)Knc in the previous formula. Expres-
sion (7) for h̃ shows that the deviation grows with the
disparity between the K̃n(θ), so it increases when de-
parting from Tc. The deviations can be quantified by
δA(θ) = 1 − (Hc2(θ)/HSAGL(θ))2. Figure 4 displays the
maximum deviation δAmax = maxθδA(θ). The dashed line
is obtained from the two-gap GL theory with the param-
eters used above to fit the Hc2-data by Lyard et al. [6] in
Figure 1. The calculation qualitatively reproduces exper-
imental data from Rydh et al. [9]: δAmax increases with
decreasing temperature and then saturates. But a quanti-
tative discrepancy appears below 0.9Tc and becomes im-
portant at lower temperature. This deviation can be par-
tially explained by the fact that experimental results are

0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

δA
m

ax

T/T
c

Fig. 4. Maximum deviation from the single-gap GL scaling
law: squares are experimental data [9] and lines are obtained
from the two-gap GL theory.

strongly sample dependent. At the present, the origin of
the discrepancy remains an opened question. The full line
is obtained with a modified interband coupling γ� = 0.3a1

and K�
c2 = K2c/3 corresponding to a smaller anisotropy

in the π-band.

4 In-plane modulation of Hc2

In a hexagonal crystal, the transition magnetic field should
exhibit a six-fold modulation when rotated about the
c-axis [25]. The crystal field effect on superconductiv-
ity can be incorporated to the GL theory by including
higher order (non-local) gradient terms [26]. Symmetry
arguments suggest that coupling between the supercon-
ducting order parameter and the hexagonal crystal lattice
appears at the sixth-order gradient terms. For a two-gap
superconductor like MgB2, the additional sixth-order part
of the free energy is a sum of separate contributions from
each band: FGL −→ FGL +F6,1 +F6,2. The correction de-
rived from the BCS theory [18,27] is (omitting the index
n = 1, 2 for brevity)

F6 =
ζ(7)N
32π6T 6

c

(
1 − 1

27

)
〈vFivFjvFkvFlvFmvFn〉

× (ΠiΠjΠk∆)∗(ΠlΠmΠn∆). (13)

Setting the z-axis perpendicular to the basal plane, the
above terms can be split into isotropic in-plane part

F iso
6 = Ki

6∆
∗
[
Π2

x + Π2
y

]3

∆ (14)

with Ki
6 = ζ(7)N

64π6T 6
c

(
1 − 1

27

) (〈v6
Fx〉 + 〈v6

Fy〉
)
, and

anisotropic in-plane contribution

F an
6 =

1
2
Ka

6 ∆∗
[
(Πx + iΠy)6 + (Πx − iΠy)6

]
∆ (15)

with Ka
6 = ζ(7)N

64π6T 6
c

(
1 − 1

27

) (〈v6
Fx〉 − 〈v6

Fy〉
)
. This expres-

sion of F an
6 assumes that the x- and the y-axes are paral-

lel to the reflection lines in the ab-plane. With the x-axis
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parallel to the b-direction, tight-biding calculations [18]
yield 〈v6

Fx〉 = 4.608, 〈v6
Fy〉 = 4.601 for the σ-band, while

for the π-band, 〈v6
Fx〉 = 1.514, 〈v6

Fy〉 = 1.776 in units of
1046 (cm/s)6. The different sign of the hexagonal harmon-
ics of the Fermi velocities in the two bands is responsible
for a unique 30-degree orientational transition of the vor-
tex lattice in MgB2 [18]. No theory can describe at present
the electron-phonon effect on the hexagonal modulation of
the Fermi surface. We use, therefore, the raw LDA values
for all gradient coefficients in the consideration below. If
we rotate now the orthogonal axes so that the y-axis is
parallel to the magnetic field H when the latter forms an
angle φ with the a-axis, the terms in F6 change in a simple
way: F iso

6 is preserved while F an
6 turns into

F an
6 =
1
2
Ka

6∆∗
[
ei6φ(Πx + iΠy)6 + e−i6φ(Πx − iΠy)6

]
∆. (16)

Since Πy = 0, the extra term can be written as F6 =∑
K6,n∆∗

nΠ6
x∆n with K6,n = Ki

6,n + Ka
6,n cos(6φ). For

the variational approximation, the new functional yields
the quadratic form

F2 =
(
α1 + K̃1h + K̃6,1h

3
)
|c|2 +

(
α2 + K̃2h

+K̃6,2h
3
)
|d|2 − γ̃ (c∗d + d∗c) (17)

with K̃6,n = 15
8 K6,nµ3

n. While in the expansion method,
this results in the new matrix element

MF2+F6
2p+n,2q+n′ =

MF2
2p+n,2q+n′ + h3K6,n

(
Knc

Kn

)3/2

M
(6)
2p,2qδn,n′ (18)

with M
(6)
p,q = 1

8

〈
Ψp|(â† + â)6|Ψq

〉
where â is the annihila-

tion operator of Landau levels.
In the weakly anisotropic regime F6 
 F2, we expect

Hc2(φ) ≈ H◦
c2

(
1 + ηi + ηa cos(6φ)

)
. (19)

The isotropic parts yield a φ-independent shift of Hc2 (and
ensure K6,n > 0 for the numerical solution converging)
while the anisotropic parts are responsible for the six-fold
modulation of the correction. ηa can change sign when the
temperature varies because the anisotropies in each band
are opposite. Figure 5 displays the corrections brought
by the isotropic parts of F6. The deviations become im-
portant below 30 K as expected out of the estimated
GL regime, which implies the necessity to retain higher or-
der terms in the gradient expansion of the GL functional.

The extra h3 terms prevent from deriving an analyt-
ical expression for the magnetic field correction δhc2 =
hc2(φ)−hc2(π/12). We can however partially estimate the
latter. Let us name the quantities related to the quadratic
form (F2 + F iso

6 ) with the superscript “◦”, and the ones
for (F2 + F iso

6 + F an
6 ) without it. Within the variational
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Fig. 5. Influence of the isotropic correction F6 with
(〈v6

F1〉, 〈v6
F2〉) = ν(4.6, 1.6) (in units of 1046 (cm/s)6) for dif-

ferent magnitudes ν: relative shift of the upper critical field
ηi = (Hν

c2 − H◦
c2)/H◦

c2 and corresponding variational parame-
ters µn.

method, we then find with a perturbation expansion

δh̃c2

h̃◦
c2

≈ 1
h̃◦

c2

dh̃◦
c2

dT

〈∆◦|F an
6 |∆◦〉

〈∆◦|∂(F2 + F iso
6 )/∂T |∆◦〉

∣∣∣∣
h̃◦

c2

(20)

≈ 15
8

cos(6φ)T
dh̃◦

c2

dT
h̃◦ 2

c2

Ka
6,1µ

◦ 3
1 + Ka

6,2µ
◦ 3
2 ρ2

a1 + a2ρ2

where ρ2 = |c◦/d◦|2. The expansion method provides in a
similar way

δhc2

h◦
c2

≈ T

h◦
c2

dh◦
c2

dT

(1 + ρ2)〈∆◦|F an
6 |∆◦〉

a1 + a2ρ2

∣∣∣∣
h◦

c2

(21)

but 〈∆◦|F an
6 |∆◦〉 has a more complicated expression.

In Figure 6, we have plotted the relative modulation
amplitude ηa = (hc2(0) − hc2(π/6))/(hc2(0) + hc2(π/6))
with the hexagonal anisotropy 〈v6

Fb〉 = 〈v6
F 〉i + 〈v6

F 〉a
and 〈v6

Fa〉 = 〈v6
F 〉i − 〈v6

F 〉a where (〈v6
F1〉i, 〈v6

F2〉i) =
(4.6, 1.6) while (〈v6

F1〉a, 〈v6
F2〉a) = (0.3ν1,−0.2ν2) (in units

of 1046 (cm/s)6). Ab initio calculations provides 〈v6
F1〉a 


〈v6
F2〉a for MgB2 which corresponds around to the cou-

ple (ν1, ν2) = (0; 1) in Figure 6. Due to the LDA results
uncertainty and also to illustrate the interplay between
the two bands, the plots for other values of (ν1, ν2) are
displayed. Note the results at low temperature should be
taken with caution since they are obtained out of the
GL regime. When the hexagonal anisotropies of each band
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Fig. 6. Relative modulation amplitude for different
pairs (ν1, ν2): solid lines are obtained with the variational
method and symbols with estimate (20).

are of the same order, ηa sign can change with temper-
ature. But this modulation is too small to be detected
experimentally in the GL regime, which agrees with mea-
surements reported by Shi et al. [8]. Estimation (20) gives
three reasons for this. First, ηa grows as h2

c2 contrary to
the four-fold symmetry crystal case where the increase is
linear. Then the anisotropies of the two bands oppose each
other. And finally, even though 〈v6

F1〉a would be too small
to compete with 〈v6

F2〉a, the contribution from the second
band is reduced by the rapidly decreasing factor ρ2 and,
below 30 K, by µ3

2.

5 Conclusions

Angular and temperature dependence of the upper
critical field of MgB2 have been determined within the
two-gap GL theory. We have used two different numerical
methods which are in excellent agreement with each
other and yield an unconventional anisotropy of Hc2

observed in the superconductor MgB2. Such a behavior
reflects the different Fermi sheet geometries and the
varying importance of the small π-gap. The zeroth
Landau levels employed in the variational approach
are sufficient for accurate description of the continuous
transition at Hc2. Contrary to the single-gap case, spatial
anisotropy of the gap functions in the plane perpendicular
to the magnetic field changes with temperature and can
be different for each band. This explains the devia-
tion from the effective mass angular dependence (12)
applicable to ordinary superconductors. Existence of
two different characteristic lengths should also affect
the vortex core shape [18], especially when an applied
field is perpendicular to the c-axis. The gap functions
have an effective single-component behavior only in a
temperature region near Tc significantly narrower than
the range for the validity of the two-gap GL theory
∼(Tc − T )/Tc ∼ 1/7. At last, the hexagonal ab-plane
modulation of Hc2 arising from the crystal symmetry can

result in a change of the sign of the hexagonal harmonics
of Hc2(θ) when the temperature is decreased.
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